

"Use of Dynamic Modulus (E*) in the Design of Hot-Mix Asphalt (HMA) Pavement"

for Presentation @ Pavement Evaluation Workshop Newington, Connecticut September 10, 2002

An FHWA Pooled Funds Project

Lead Agency

Connecticut Department of Transportation

Why is E* Important?

The new 2002 design guide for parements is based on mechanistic principles. requires a modulus, analogous to E for to compute stresses and stains in the HM pavement. E* has been selected for this purpose

Definition of E*

E* is the modulus of a visco lastic material. It is computed by divide the maximum (peak to peak) stress by recoverable (peak to peak) axial stra a test sample subjected, to a sinusoida load at various test temperatures.

Why this Project?

- ✓ The 1986 AASHTO pavement design guide contained resilient modulus (M) to characterize HMA mixes. M_R did t work and it took FHWA and others millious f dollars to recognize this flaw.
- Our project is designed to look at the protocol for determining E* and provide state DOTs recommendations for the application of the protocol in their operations.

Project Objectives

✓ Determine the applicability f E* to characterize HMA mixes

Determine the practical range of the protocol

Evaluate the determination of E* for use in operational DOTs

Using existing commercially available equipment

E* Protocol - Overview

Test 4" diameter – 6" high sample
5 Test temperatures
6 Load frequencies / temperature

Coring Apparatus

Table 2. Recommended Number of Specimens

LVDTs per	Number of	Estimated Limit of
Specimen	Specimens	Accuracy
2	2	18.0
2	3	15.0
2	4	13.4
3	2	13.1
3	3	12.0
3	4	11.5

Load-Test Frame & Environmental Chamber

Table 3. Recommended Equilibrium Times.

Specimen Temperature, ^o C (^o F)	Time from room temperature, hrs 25 °C (77 °F)	Time from previous test temperature, hrs
-10 (14)	overnight	-
4.4 (40)	overnight	4 hrs or overnight
21.1 (70)	1	3
37.8 (100)	2	2
54.4 (130)	2	1

* Note that the temperature equilibrium times may vary depending on the type of environmental chamber in use. Some testing laboratories reported as much as 6 hours to reach the equilibrium temperature.

Table 4. Typical Dynamic Stress Levels

Temperature, ^o C (^o F)	Range, kPa	Range, psi
-10 (14)	1400 - 2800	200 - 400
4.4 (40)	700 - 1400	100 - 200
21.1 (70)	350 - 700	50 - 100
37.8 (100)	140 - 250	20 - 50
54.4 (130)	35 - 70	5 - 10

Note: Axial strain limited to 50 to 150 microstrain

Sample E* Output

Computer Printout

Constructed Master Curve

Shift Factor

What have we learned to date?

As stated previously, we hope encounter and overcome any process with the E* protocol. In other word would be in a position to advise DOT personnel on the pitfalls and problems using this protocol. We have indeed had some problems.

Protocol Changes

∠ Compaction of 7" high - 6" drameter sample was a problem. We finally wound up with a 6.7" high sample which would fit in Superpave gyratory compactor. An e amount was sawn from each end to obtain 6" sample. The tendency for the saw to a corners was over come by wrapping two turns of electrical plastic tape around the c site before sawing.

Compaction & Specimen Tolerances

✓ It turns out that there were sevent versions of the protocol floating around the mited States between 1999 and 2002. On 4 there was a meeting to consolidate chan and provide a revised protocol for subsequent evaluation. This process was concluded in June 2002 and the resultant protocol used in remainder of the project.

Ruined Sample

Specimen Instrumentation

A template was developed and hele place with rubber bands to overcome align problems as gage plugs were glued onto sides of the test specimen

Instrumenting Test Specimen

Fabrication & Test Timeframe

- Mix & CompactInstrument
- ∠ Test
- Construct Master Curve for Mix

Problems with test system

Based on the time to fabricate, prepare, instrument and test the specimens at five temperatures and six frequencies, a single test with two or n specimens will take well over seven full days to complete. This is a very long time complete one test. Conditioning the specimen the test temperature is a big issue. We've also difficulty in maintaining proper temperature and humidity in the test chamber.

Condensation

Icing Problem

- The next slide contains an embedded Microsoft movie. Some older systems may not be able to play this movie.
- If viewing these slides as a Powerpoint slide show the movie should start with one mouse click on the movie.
- If viewing this in a Powerpoint editing mode double click on the image.
- The movie file is included on this CD. If you are unable to start the movie in Powerpoint then usi Windows Media Player the movie should start.
- If you need assistance getting the movie to play contact Jim Mahoney at (860) 486-5956

Possible result of Icing

(click image for movie - there is a short pause)

What we've learned to date

- ∠ Use clamps for coring & saw
- « Use jig to set gage points
- Base temperature on thermal coup in dummy specimens
- Set load for each frequency & temperature

⊯ Test -10C only when humidity is low

E* Round Robin

NCAT, Western SuperPave Center, FHWA, Applied Asphalt Tech logy

- - Arizona State
 - Connecticut
 - Maryland
 - North Carolina State
 - Perdue
 - Washington State

E* Tests of State Mixes

z California

∝ Connecticut

🗷 Illinois

∝ Montana

∠ Nebraska

≈ Nevada

North Carolina

Project Completion Date April, 2003

Thank you for your interest and attention

LIGHTS on PLEASE

